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Pointers 

What if we want functions to change values inside memory that are outside the scope of a function?  

Let us write a program that swaps the values of two variables by creating the function swap: 

1. #include <stdio.h> 
2.   
3. void swap(int a, int b){ 
4.   printf("a=%d, b=%d\n", a, b); 
5.   int tmp; 
6.   tmp = a; 
7.   a = b; 
8.   b = tmp; 
9.          printf("a=%d, b=%d\n", a, b); 
10. } 
11.   
12. int main(void){ 
13.  int x = 10; 
14.  int y = -15; 
15.  printf("x=%d, y=%d\n", x, y); 
16.  swap(x, y);  
17.  printf("x=%d, y=%d\n", x, y); 
18.  return 0; 
19. }  

What is printed? 

x=10, y=-15 

a=10, b=-15 

a=-15, b=10 

x=10, y=-15 

 

Why? 

Because a copy of the x and y values were assigned to the parameters a and b. 

Any changes to a and b did not affect x and y. But how can we make the changes in the swap function affect the 
variables x and y in the main? 

 

We saw this already when we changed values in an array. We can do this with other values by using pointers and 
references. 

 

Let us have a look at the following example: (please do pay attention to the comments) 
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1. #include <stdio.h> 
2.   
3. int main(void) 
4. { 
5.   int i = 6; 
6.   int *p; 
7.   p = &i;  // we say "p has the address of i" or "pointing at i" 
8.   *p = 10; // p now points at i,  
9.     // the value that p is pointing at was changed to 10,  
10.    // thus i was changed to 10 as well 
11.  printf("%d \n", i); // 10 is printed 
12.  int *q; 
13.  q = p;  // q is pointing where p is pointing at which is i 
14.  *q = 17; // q and p now point at i,  
15.    // the value that q is pointing at was changed to 17 
16.    // thus the value of i was changed to 17 as well 
17.  printf("%d \n", i); // 17 is printed 
18.   
19.  return 0; 
20. } 
21.   

 

   

int *p is a pointer to an integer  
as double *d   is a pointer to double. 

&i is the address of the variable i;   this is different from the value stored in i. 

 *p is the dereferencing of p; it is the value stored where p points at, and can be used to modify that value. 
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Sections of memory 
 

 In this course, we model five sections of memory: 

1. Code: to store the program code/instructions in machine code (machine-readable), done during compiling 
2. Read-Only Data: to store the global constants 
3. Global Data: to store the global variables and make them available throughout the entire execution of the 

program. 
4. Heap: used to allocate memory dynamically (we will talk about this later) 
5. Stack: used to store local variables and return addresses1 to manage function calls2, etc. Each function call creates 

a stack frame3. The stack grows toward lower addresses. 

 

Let's go back to our last program and draw the stack section for it and how it looks before executing return 0 

 

 

 

 
1 When we encounter a return, we need to know: “what was the address we were at right before this function was called?” In other words, we need to “remember” the 

program location to “jump back to” when we return. This location is known as the return address. In this course, we use the name of the calling function and a line 

number (or an arrow) to represent the return address. 

2 As the program flow jumps from function to function, we need to “remember” the “history” of the return addresses. When we return from h, we jump back to the 

return address in g. The “last called” is the “first returned”. This “history” is known as the call stack. Each time a function is called, a new entry is pushed onto the 

stack. Whenever a return occurs, the entry is popped off of the stack. 

3 Each stack frame contains: 1) the argument values 2) all local variables (both mutable variables and constants) that appear within the function block (including any 

sub-blocks) 3) the return address 
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let's review one more example: 

What is the output of the following program? Try to figure it out before looking at the solution provided later on. 

1. #include <stdio.h> 
2.   
3. void swap(int *p1, int *p2) 
4. { 
5.   int tmp; 
6.   tmp = *p1; 
7.   *p1 = *p2; 
8.   *p2 = tmp; 
9. } 
10.   
11. int main(void) 
12. { 
13.  int x = 10; 
14.  int y = -15; 
15.  printf("x=%d, y=%d\n", x, y); 
16.  swap(&x, &y); // Why did we pass &x and &y and not x,y?????? 
17.  printf("x=%d, y=%d\n", x, y); 
18.  return 0; 
19. }  

The solution is on the next page. Don't look before you complete your trace and figure out the output! 

 Why did we pass &x and &y as arguments when we called do_it? 

Answer: Because do_it expects two memory addresses to be assigned to the two parameters of the type pointer.   
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Solution: 

 

 

Why? Let's do a trace using a memory model: 
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Just for Fun: What is the output of the following program? Do a manual trace and figure it out before you execute the 
program. [Reminder: ^ is a bitwise operation] 

 

1. #include <stdio.h> 
2.   
3. int main(void) 
4. { 
5.   int x = 10; 
6.   int y = -15; 
7.   printf("x=%d, y=%d\n", x, y); 
8.   x ^= y; 
9.   y ^= x; 
10.  x ^= y; 
11.  printf("x=%d, y=%d\n", x, y); 
12.  return 0; 
13. } 
14.   

 

One more exercise: What is the output of the following program? Do a manual trace and figure it out before you 

execute the program. What is returned by the functioni? 

1. #include <stdio.h> 
2.   
3. int calc_array(int a[], int n){ 
4.   int val = a[0]; 
5.   int *res = &a[0]; 
6.   for (int i = 1; i < n; i++) 
7.    if (a[i] > val) 
8.    { 
9.       val = a[i]; 
10.      res = &a[i]; 
11.   } 
12.  return *res; 
13. } 
14.   
15. int main(void){ 
16.  int a[10] = { 1, 10, 67, 876, -76, 0, -45, 8, 9, 1 }; 
17.  int ans; 
18.  ans = calc_array(a, 10); 
19.  printf("The result is %d\n", ans); 
20.  return 0; 
21. }  

 

  



P a g e  8 | 32 

 

Pointer Arithmetic and Arrays 
 
C allows an integer to be added to a pointer. The result depends on the type of pointer used. 

(p+1) adds the sizeof whatever p points at.  
You can NOT add two pointers.  
A pointer q can be subtracted from another pointer p if the pointers are the same type (point to the same type). 
Pointers can be compared with the comparison operators:  <, <=, ==, !=, >=, > 
 

Example: 

1. #include <stdio.h> 
2.   
3. int main(void){ 
4.   int a[8] = { 2, 3, 4, 5, 6, 7, 8, 9 }; 
5.   int *p, *q, i; 
6.   p = &(a[2]); // p points to a[2] 
7.   q = p + 3; // q points to a[5] 
8.   p += 4;  // p points to a[6] 
9.         q = q - 2; // q points to a[3] 
10.  i = q - p; // i = 3 - 6 = -3 
11.  i = p - q; // i = 6 - 3 = 3 
12.  if (p <= q) 
13.   printf(" less \n"); 
14.  else 
15.   printf(" more \n"); // printed 
16.  return 0; 
17. }  

   Two-dimensional stack-allocated arrays are just glorified one-dimensional arrays. So, when doing pointer arithmetic 
with two-dimensional arrays, remember to treat it as a row-major array, and you will be fine. 

 

1. #include <stdio.h> 
2.   
3. int main(void){ 
4.   int a[3][4] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 }; 
5.   int *p, *q, i; 
6.   p = &(a[1][2]); // p points to a[1][2] 
7.   q = p + 2; // q points to a[2][0] 
8.   p += 4;  // p points to a[2][2] 
9.          q = q - 5; // q points to a[0][3] 
10.  i = q - p; // -7 
11.  i = p - q; // 7 
12.  if (p <= q) 
13.   printf(" less \n"); 
14.  else 
15.   printf(" more \n"); // printed 
16.  return 0; 
17. }  

Let us revisit summing an array and finding the largest using pointer arithmetic. 
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1. #include <stdio.h> 
2.   
3. int sum(int a[], int n) 
4. { // one way to do it 
5.   int total = 0; 
6.   for (int *p = a; p < a + n; p++) // p is a pointer that points at an  
7.                                           // element in a 
8.       total += *p;   // *p is the value that p is pointing at 
9.   return total; 
10. } 
11.   
12. int altsum(int a[], int n) 
13. { //alternative summing 
14.  int total = 0; 
15.  for (int i = 0; i < n; i++)   // i is a valid index in a 
16.   total += *(a + i);    // (a+i) points at the element in index i in 
17.                                      // array a 
18.                                    // *(a+i) is the value in index i in array a 
19.  return total; 
20. } 
21.   
22. int *largest(int a[], int n)  // note: the function returns a pointer 
23. { 
24.  int *m = a;                // m is pointing at the first value in array a 
25.  for (int *p = a + 1; p < a + n; p++)  // p is a pointer that points at an 
26.                                               // element in a 
27.  { 
28.     if (*p > *m) 
29.   m = p;  // m points at the largest value in a (first occurrence) 
30.  } 
31.  return m;  // return a pointer 
32. } 
33.   
34. int main(void) 
35. { 
36.  int a[8] = { 9, 4, 5, 999, 2, 4, 3, 0 }; 
37.  int size = sizeof(a) / sizeof(a[0]); 
38.  printf("%d\n", sum(a, size));    // 1026 is printed 
39.  printf("%d\n", altsum(a, size));   // 1026 is printed 
40.  printf("%d\n", *largest(a, size));   // 999 is printed 
41.  return 0; 
42. }  

Attention: 

The * operator and ++ operator can be combined: 

• *p++ is the same as *(p++) (Use *p first then increment pointer). 
• (*p)++ (Use *p first, then increment *p, increment the content that p is pointing at). 
• *++p or *(++p) (Increment p first then use *p after increment). 
• ++*p or ++(*p) (Increment *p first then use *p after increment). 
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More examples with pointers (two versions of the same task, calculation of the total of an array): 

 

1. #include <stdio.h> 
2.   
3. int main(void) 
4. { 
5.   int a[4] = { 5, 2, 9, 4 }; 
6.   int sum = 0; 
7.   for (int *p = a; p < a + 4; p++) 
8.   { 
9.    sum += *p; 
10.  } 
11.  printf("%d\n", sum); 
12.  return 0; 
13. }  

 

1. #include <stdio.h> 
2.   
3. int main(void) 
4. { 
5.   int a[4] = { 5, 2, 9, 4 }; 
6.   int sum = 0; 
7.   int *p = &a[0]; 
8.   while (p < &a[4]) 
9.   { 
10.   sum += *p++; 
11.  } 
12.  printf("%d\n", sum); 
13.  return 0; 
14. }  
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Dynamically Allocated Memory 

 

Our memory usage has been on the stack up to this point. However, sometimes, we might want to allocate large chunks 
of memory or need some dynamically allocated memory.  

Heap is great to  

• resize arrays when they are full or to  
• store global data that is available to the whole program.  

 

This is where the heap and memory allocation concepts will become necessary. 

 

Memory model 
 

Recall discussing the five sections of the memory model at the start of this chapter:  

 

 

 

 

 

Now, we will focus on the Heap, also known as a "pool" of memory available to a program. The memory is dynamically 
borrowed/allocated from the Heap. When this allocated memory is no longer needed, we can deallocate it (it can be 
"returned" to OS and possibly reused). The following is a summary of Heap and Stack for review: 

 



P a g e  12 | 32 

 

We use malloc and free from stdlib.h library to allocate and deallocate memory from the Heap 

 

Syntax: 

 

void *malloc(size_t size); 

//  Allocates memory block of size number of bytes but doesn't initialize.  

// Returns a pointer to it. 

//  Returns NULL, the null pointer, if insufficient memory or size==0. 

 

void free(void *p) 

// Frees a memory block that p is pointing at that was allocated by the user (say using malloc). 

// Failure to free your allocated memory is called a memory leak. 

 
 

NULL Pointer 
 

Since pointers are memory addresses, we need to be able to distinguish between a pointer to something and a pointer 
to nothing. 

We use the NULL pointer to do this. It can be called by 

• int *p = NULL; 
• int *p = 0; 
• int *p = (int *) 0; 
• int *p = (void *) 0; 

The (void *) typecast will automatically get converted to the correct type. We will talk about it later on in this 
course. 

The NULL pointer is in many libraries, including <locale.h>, <stddef.h>, <stdio.h>, <stdlib.h>, 
<string.h>, <time.h>, <wchar.h> and possibly others. 

 

Example (Next page): 
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1. #include <assert.h> 
2. #include <stdio.h> 
3. #include <stdlib.h> 
4.   
5. int *numbers(int n); 
6.   
7. int main(void) 
8. { 
9.   int *q = numbers(100); // q is pointing at an array of length 100   
10.                                //  allocated on the HEAP 
11.  printf("%d\n", q[50]);  // 50 is printed 
12.  free(q); // Avoid memory leak 
13.  return 0; 
14. } 
15.   
16. int *numbers(int n) 
17. { 
18.  int *p = malloc(n * sizeof(int)); // allocate enough space for n integers 
19.  assert(p);  // Verify that malloc succeeded (p is not NULL) 
20.  for (int i = 0; i < n; i++)  // assign the values  0-99 to the array 
21.   p[i] = i; 
22.  return p;   // returns a pointer to the beginning of the array 
23. }  

 

  What is wrong with the codeii below? 

1. int *my_array; 
2. my_array = malloc(10*sizeof(int)); 
3. my_array = malloc(10*sizeof(int));  

 

More functions (allocators): 

void* calloc(size_t nmemb, size_t size) 

// Clear allocate. 

// Allocates nmemb elements of size bytes, each initialized to 0 

 

void* realloc (void *p, size t size) 

// Resizes a previously allocated block 

// We may need to create a new block and copy over the old block contents. 

 Again, we need <stdlib.h> to use these.  

      Typically, malloc is used unless you have a good reason to do otherwise. 

Demo about realloc: 
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1. #include <stdio.h> 
2. #include <stdlib.h> 
3.   
4. int main() 
5. { 
6.   char *str; 
7.   str = (char *) malloc(15); 
8.   strcpy(str, "CS137 is FUN!!"); 
9.   printf("String = %s Address = %u\n", str, str); 
10.   
11.  str = (char *) realloc(str, 25); 
12.  strcat(str, " Indead!!"); 
13.  printf("String = %s Address = %u\n", str, str); 
14.   
15.  str = (char *) realloc(str, 6); 
16.  str[5] = '\0'; 
17.  printf("String = %s Address = %u\n", str, str); 
18.   
19.  free(str); 
20.  return (0); 
21. }  
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Pointers to Structures & Struct Hack 
 

Let's revisit our time-of-day structure example: 

1. struct tod { 
2.  int hours; 
3.  int minutes; 
4. };  

To create a pointer to the structure, we can use: 

struct tod *t = malloc(sizeof(struct tod)); 

Now, t points to the beginning of a struct where the integers hours and minutes are located. 

We can modify these values by using (*t).hours = 18;   or       t->hours = 18; 

  Arrow operator can be overloaded (say in C++), whereas the dot cannot (You will learn about that in future 
courses). Brackets are necessary above because the dot has precedence. Arrow is left-associative (like addition, 
multiplication, etc.). 

 

Do you recall the following example? 

1. #include <stdio.h> 
2.   
3. struct tod { 
4.  int hours; 
5.  int minutes; 
6. }; 
7.   
8. void todPrint(struct tod when) 
9. { 
10.  printf(" %0.2d :%0.2d\n", when.hours, when.minutes); 
11. } 
12.   
13. int main(void) 
14. { 
15.  struct tod now = { 16, 50 }; 
16.  struct tod later = {.hours = 18 }; 
17.  printf("now: "); 
18.  todPrint(now); 
19.  printf("later: "); 
20.  todPrint(later); 
21.  later.minutes = 1; 
22.  printf("updated later: "); 
23.  todPrint(later); 
24.  return 0; 
25. }  

All values were stored in the STACK. 
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The following version uses the HEAP to allocate memory and free it later to avoid memory leaks. 

 

1. #include <stdio.h> 
2. #include <stdlib.h> 
3.   
4. struct tod { 
5.  int hours; 
6.  int minutes; 
7. }; 
8.   
9. void todPrint(struct tod *when){ 
10.  printf(" %0.2d :%0.2d\n", (*when).hours, (*when).minutes); 
11. } 
12.   
13. int main(void){ 
14.  struct tod *now = malloc(sizeof(struct tod)); 
15.  (*now).hours = 16; 
16.  (*now).minutes = 50; 
17.  struct tod *later = malloc(sizeof(struct tod)); 
18.  (*later).hours = 18; 
19.  printf("now: ");   todPrint(now); 
20.  printf("later: "); todPrint(later); 
21.  (*later).minutes = 1; 
22.  printf("updated later: ");  todPrint(later); 
23.  free(now); 
24.  free(later); 
25.  return 0; 
26. }  

 

In the time-of-day example, the sizes of all the elements were fixed. What happens if, for example, you want a struct 
with an array whose size is to be determined later? There are ways to handle this, but it must be done carefully. This is 
valid only in C99 and beyond. This technique is called the "struct hack". 

 

 

Let us review the following program. (Pay close attention to the provided comments) 

 

 

 

 

 

 



P a g e  17 | 32 

 

1. #include <assert.h> 
2. #include <stdio.h> 
3. #include <stdlib.h> 
4.   
5. struct flex_array { 
6.  int length; 
7.  int a[]; // Note : declared at end of struct definition 
8. }; 
9.   
10. int main(void){ 
11.     printf("%zu\n", sizeof(struct flex_array)); // 4 is printed (size of an int.  
12.                                                 // a has size zero for now) 
13.   
14.     size_t array_size = 10; 
15.     struct flex_array *fa = malloc(sizeof(struct flex_array) + array_size * 

sizeof(int)); 
16.     assert(fa); 
17.     printf("%zu\n", sizeof(struct flex_array));  // 4 is printed 
18.     printf("%zu\n", sizeof(fa));  // 8 is printed (size of a pointer) 
19.     printf("%zu\n", sizeof(*fa)); // 4 is printed (size of the first integer that 

fa is pointing at) 
20.     fa->length = array_size; 
21.     for (int i = 0; i < fa->length; i++) 
22.  fa->a[i] = i*i; 
23.     printf("%d\n", fa->a[4]);  // 16 is printed 
24.     free(fa); 
25.     return 0; 
26. }  

 

 

    In <stdlib.h>, a data type size_t should be used when using malloc. 
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Vectors (Variable Size Array) 

Arrays have a fixed size. Can an array be created that expands as more terms are needed during the program's 
execution? There is a library in C++ that does this, the vector library, but not in C. We'll create a simplified instance of 
this to demonstrate how it works for a vector of integers. 

 

Idea: Initialize contents to 0 and grow automatically by powers of 2. 

 

Interface file: vector.h 

 

1. #ifndef VECTOR_H 
2. #define VECTOR_H 
3.   
4. struct vector ; 
5.   
6.  //will create a new empty vector. 
7.  struct vector *vectorCreate(void); 
8.   
9.  //deletes the vector *v. Returns NULL on success.  
10. //(return NULL to allow for v=vectorDelete(v);) 
11. struct vector *vectorDelete(struct vector *v); 
12.   
13. //adds val to the end of the vector. Allocates new space as necessary. 
14. void vectorAdd(struct vector *v, int val); 
15.   
16. //sets value in index ind to be val. 
17. void vectorSet(struct vector *v, int ind , int val); 
18.   
19. //returns element at index ind. 
20. int vectorGet(struct vector *v, int ind); 
21.   
22. //returns the length of the vector *v. 
23. int vectorLength(struct vector *v); 
24.   
25. # endif  
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Implementation file: vector.c 

1. #include "vector.h" 
2. #include <assert.h> 
3. #include <stdlib.h> 
4.   
5. struct vector {  // vector is a structure with three elements 
6.  int *arr;  // pointer to array 
7.  int size, length; // size is the total storage.  
8.  //length is the actual used storage 
9. }; 
10.   
11. struct vector *vectorCreate(void) 
12. { 
13.  // malloc returns NULL if it was not completed successfully 
14.  struct vector *v = malloc(sizeof(struct vector)); 
15.  assert(v); // to check that malloc was completed successfully  
16.  v->size = 4; // the first created vector is of size 4 
17.  v->arr = malloc(4 * sizeof(int)); 
18.  assert(v->arr); 
19.  v->length = 0; // no values in the vector yet. 
20.  return v; 
21. } 
22.   
23. struct vector *vectorDelete(struct vector *v) 
24. { 
25.  if (v) 
26.  { 
27.   free(v->arr); // free the inside array first 
28.   free(v); // then free the vector 
29.  } 
30.  return NULL; 
31. } 
32.   
33. void vectorAdd(struct vector *v, int value) 
34. { 
35.  assert(v); 
36.  if (v->length == v->size) 
37.  { // if arr is full 
38.   int newSize = v->size * 2; //double the size 
39.   // alocate the new size of array 
40.   int *newArr = malloc(newSize * sizeof(int)); 
41.   for (int i = 0; i < v->size; ++i) 
42.   { 
43.    //copy the data from the old storage to the new storage 
44.    newArr[i] = v->arr[i]; 
45.   } 
46.   newArr[v->size] = value; 
47.   free(v->arr); // free the old array 
48.   v->size = newSize; 
49.   v->arr = newArr; // make arr point to the new array 
50.  } 
51.  else 
52.  { // if arr is not full 
53.   v->arr[v->length] = value; // add the new value 
54.  } 
55.  ++v->length; // update length 
56. } 
57.  
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58.   
59. void vectorSet(struct vector *v, int ind, int value) 
60. { 
61.  assert(v && ind >= 0 && ind <= v->length); 
62.  //update element in index ind with the new value 
63.  v->arr[ind] = value; 
64. } 
65.   
66. int vectorGet(struct vector *v, int ind) 
67. { 
68.  assert(v && ind >= 0 && ind < v->length); 
69.  return v->arr[ind]; // get the value in index ind 
70. } 
71.   
72. int vectorLength(struct vector *v) 
73. { //return the number of elements in vector 
74.  assert(v); 
75.  return v->length; 
76. } 
77.   

 

 

• Notice how none of the implementation details were in our header file, only the declarations. This is a design 
principle known as information hiding. We do this to hide implementation details from the user yet keep the user 
interaction/interface the same. Thus, we can modify the internal code and not affect other people using our code 
externally. 

• Notice that struct vector v is not possible with this header, whereas struct vector *v is possible because the header 
doesn't know the struct size since it is implemented in the .c implementation file. 
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Sample program: 

1. #include <stdio.h> 
2. #include "vector.h" 
3.   
4. int main(void) 
5. { 
6.   struct vector *v = vectorCreate(); 
7.   for (int i = 0; i < 20; ++i) 
8.   { 
9.    vectorAdd(v, i); 
10.  } 
11.  printf("%d\n\n", vectorLength(v)); 
12.  for (int i = 0; i < 20; ++i) 
13.  { 
14.   printf("v[%d]=%d  ", i, vectorGet(v, i)); 
15.  } 
16.  printf("\n\n\n"); 
17.  for (int i = 0; i < 20; ++i) 
18.  { 
19.   vectorSet(v, i, i * i); 
20.   printf("v[%d]=%d  ", i, vectorGet(v, i)); 
21.  } 
22.  printf("\n\n"); 
23.  v = vectorDelete(v); 
24.  if (v==NULL) printf("Success!\n"); 
25.  else printf("Freeing was not completed successfully!"); 
26.  return 0; 
27. }  

 

Output: 

20  

v[0]=0  v[1]=1  v[2]=2  v[3]=3  v[4]=4  v[5]=5  v[6]=6  v[7]=7  v[8]=8  v[9]=9  
v[10]=10  v[11]=11  v[12]=12  v[13]=13  v[14]=14  v[15]=15  v[16]=16  v[17]=17  
v[18]=18  v[19]=19  

v[0]=0  v[1]=1  v[2]=4  v[3]=9  v[4]=16  v[5]=25  v[6]=36  v[7]=49  v[8]=64  
v[9]=81  v[10]=100  v[11]=121  v[12]=144  v[13]=169  v[14]=196  v[15]=225  
v[16]=256  v[17]=289  v[18]=324  v[19]=361  

Success!  
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Additional Examples 

 

/* What is the output of the following program? */ 
 
#include <stdio.h> 
void mysterious(int *a, int *b, int *c) 
{ 
 *a = *c; 
 *b = *b + *a; 
 *c = *a - *b; 
} 
int main() 
{ 
 int w = 5; 
 int x = 1; 
 int y = 3; 
 int z = 2; 
 mysterious(&x, &y, &w); 
 printf("%d % d % d % d \n", w, x, y, z); 
 mysterious(&w, &w, &z); 
 printf("%d % d % d % d \n", w, x, y, z); 
 return 0; 
} 
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Extra Practice Problems 

1) Write a function int read_and_range(int *max, int *min, int *count_max, int *count_min) that 
reads integers until a failure occurs and returns the number of integers successfully read. If no integers were successfully 
read in, the functions return zero and do not modify (mutate) the parameters' contents. Otherwise, the functions 
mutate the contents of their (pointer) parameters as follows:  

• *max: the largest number that was successfully read  
• *min: the smallest number that was successfully read  
• *count_max: the number of times the largest number was read  
• *count_min: the number of times the smallest number was read  

Note: You may not use arrays or structures for this question.  

Advice: Don't look at my provided solutioniii before you attempt solving this question on your own. 

Here is a sample main function to test your solution 

1. int main(void) { 
2.    int min = 0; 
3.    int max = 0; 
4.    int count_min = 0; 
5.    int count_max = 0; 
6.    int count = read_and_range(&max, &min, &count_max, &count_min); 
7.    printf("min = %d\n", min); 
8.    printf("max = %d\n", max); 
9.    printf("count_min = %d\n", count_min); 
10.    printf("count_max = %d\n", count_max); 
11.    printf("count = %d\n", count); 
12. }  
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2) What is the output of the following program?  

Advice: Don't look at my provided solutioniv before you attempt solving this question on your own. 

1. #include <stdio.h> 
2. void mysterious(int *a, int *b, int *c) 
3. { 
4.   *a = *c; 
5.   *b = *b + *a; 
6.   *c = *a - *b; 
7. } 
8. int main() 
9. { 
10.  int w = 5; 
11.  int x = 1; 
12.  int y = 3; 
13.  int z = 2; 
14.  mysterious(&x, &y, &w); 
15.  printf("%d %d %d %d\n", w, x, y, z); 
16.  mysterious(&w, &w, &z); 
17.  printf("%d %d %d %d\n", w, x, y, z); 
18.  return 0; 
19. }  
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3) Define the function int ** outerproduct(int a[], int m, int b[], int n) 
  
Where a is an array with m elements, b is an array with n elements. Return a heap-allocated mxn matrix that computes 
the outer product matrix for a and b. That is, if i is from 1,…,m and j is from 1,…,n, then the outer product matrix 
c satisfies c[i][j]=a[i]*b[j]. 
  
Note: int ** is a pointer to pointer of integer 

Here is a sample main function to test your solution 

1. #include <stdio.h> 
2. #include <assert.h> 
3. #include <stdlib.h> 
4.  
5. int main() 
6. { 
7.   
8.  int m = 5, n = 3; 
9.  int a[] = { 1, 2, 3, 4, 5 }; 
10.  int b[] = { 3, 2, 1 }; 
11.   
12.  int **c = outerproduct(a, m, b, n); 
13.   
14.  assert(c); 
15.  assert(c[0][0] == 3); 
16.  assert(c[0][1] == 2); 
17.  assert(c[2][2] == 3); 
18.  assert(c[4][0] == 15); 
19.   
20.  int i; 
21.  for (i = 0; i < m; i++) 
22.  { 
23.   free(c[i]); 
24.  } 
25.  free(c); 
26.  return 0; 
27. }  

 Advice: Don't look at my provided solutionv before you attempt solving this question on your own. 
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4) We can use compression algorithms to save space when storing large amounts of data. Generally, we distinguish 
between lossless compression (e.g., gzip's DEFLATE) and lossy compression (e.g., JPG's DCT). We want to store a series of 
integers in this question so that a lossless compression algorithm might be our best choice. 

A run-length encoding is a well-suited algorithm when data (i.e., single number) are repeated frequently. Instead of 
storing each number separately, run-length encoding stores a tuple of a single digit and a single number: the digit 
indicates how many times the following number is printed. For example, the series numbers 1 1 1 3 2 1 3 2 1 1 would be 
encoded as 3 1 1 3 1 2 1 1 1 3 1 2 2 1. Shorter examples would be  

3 -> 1 3,   

2 2 2-> 3 2,  

and 2 9 9 2 -> 1 2 2 9 1 2. 

Given a run-length encoded numbers, it is possible to recreate the original sequence of numbers through decoding: 3 1 1 
3 1 2 1 1 1 3 1 2 2 1 would turn into 1 1 1 3 2 1 3 2 1 1, i.e., the original numbers. (Generally, decode(encode(data)) -> 
data for all lossless compression algorithms.) 

Write a function int *unsay(const int *src, int src_len, int *dst_len), which returns a 
decoding array containing the sequence specified by src, modifying *dst_len to be the length of the new sequence. 

Requires: src must be a valid array of length src_len; 

     src_len > 1 

Sample input: 3 1  

Sample output: 1 1 1  

Explanation: The sample input contains 3 ones, so we transfer it into 1 1 1;  

int main() { 

    int s rc[] = {3, 1, 1, 3, 1, 2, 1, 1, 1, 3, 1, 2, 2, 1}; 

    int length = 14; 

    int ds t_len; 

    int *ans  = unsay(src, length, &ds t_len); 

    for (int i = 0; i < ds t_len; i++) { 

      printf("%d ",ans [i]); 

      if (i == ds t_len - 1) printf("\n"); 

    } 

    free (ans); 

} 
 

 

https://en.wikipedia.org/wiki/Lossless_compression
https://en.wikipedia.org/wiki/Gzip
https://en.wikipedia.org/wiki/Deflate
https://en.wikipedia.org/wiki/Lossy_compression
https://en.wikipedia.org/wiki/Discrete_cosine_transform
https://en.wikipedia.org/wiki/Run-length_encoding
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5) Develop a C program, market_simulation.c, to simulate an economic market scenario where producers and 
consumers adjust their behavior based on market price. This simulation will use structs and pointers to represent 
entities and their interactions. 
 
You are tasked with creating a simulation of a fundamental economic market. In this market, some producers produce 
goods, and consumers use them. The laws of supply and demand influence the market's price: when demand is higher 
than supply, prices go up, and when supply exceeds demand, prices go down. Both producers and consumers adjust 
their production and consumption levels based on the current market price. 
 
Structs to be Defined: 
Market: Holds the current market price. 

- Fields: double price. 
Producer: Represents a producer in the market. 

- Fields: int base_production, double current_production, Market *market. 
Consumer: Represents a consumer in the market. 

- Fields: int base_consumption, double current_consumption, Market *market. 
Functions to Implement: 

- adjustProducer: Updates a producer's current production based on the market price. 
Signature: void adjustProducer(Producer *producer) 

- adjustConsumer: Updates a consumer's current consumption based on the market price. 
Signature: void adjustConsumer(Consumer *consumer) 

- adjustMarketPrice: Adjusts the market price based on the total supply and demand from all producers 
and consumers. 
Signature: void adjustMarketPrice(Market *market, Producer producers[], Consumer 
consumers[]) 

 
Simulation Logic: 
The market starts with an initial price. 
Each producer and consumer begins with a base production and consumption level. 
In each simulation round, producers and consumers adjust their production and consumption according to the current 
market price. 
After each round, the market price is adjusted based on the total supply (sum of all producers' production) and total 
demand (sum of all consumers' consumption). 
 
Equations: 

- Producer's Production Adjustment: current_production = base_production * (market_price / base_price) 
- Consumer's Consumption Adjustment: current_consumption = base_consumption * (base_price / market_price) 
- Market Price Adjustment: new_price = current_price + (total_demand - total_supply) * price_adjustment_factor 

Constraints: 
- Use a fixed number of producers and consumers (e.g., 3 each). 
- The price_adjustment_factor is a constant to moderate the rate of price changes (e.g., 0.05). 
- The simulation should run for a fixed number of rounds (e.g., 5 rounds). 

 
int main(){ 
   Market market = {30}; // Initial market price is $30 
   Producer producers[NUM_AGENTS]; 
   Consumer consumers[NUM_AGENTS]; 
 
   // Initialize producers and consumers 
   for (int i = 0; i < NUM_AGENTS; i++) { 
       producers[i].base_production = 100; // Base production of 100 units 
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       producers[i].market = &market; 
 
       consumers[i].base_consumption = 10; // Base consumption of 10 units 
       consumers[i].market = &market; 
   } 
 
   // Simulation loop for 5 rounds 
   for (int round = 1; round <= 5; round++){ 
       printf("Round %d:\n", round); 
       printf("Market Price: $%.2f\n", market.price); 
       for (int i = 0; i < NUM_AGENTS; i++){ 
           adjustProducer(&producers[i]); 
           adjustConsumer(&consumers[i]); 
       } 
       adjustMarketPrice(&market, producers, consumers); 
       printf("Total Production: %.2f units\n", producers[0].current_production * 
NUM_AGENTS); 
       printf("Total Consumption: %.2f units\n\n", consumers[0].current_consumption * 
NUM_AGENTS); 
   } 
 
   return 0; 
} 
 
Output: 
Round 1: 
Market Price: $30.00 
Total Production: 90.00 units 
Total Consumption: 10.00 units 
 
Round 2: 
Market Price: $26.00 
Total Production: 78.00 units 
Total Consumption: 11.54 units 
 
Round 3: 
Market Price: $22.68 
Total Production: 68.03 units 
Total Consumption: 13.23 units 
 
Round 4: 
Market Price: $19.94 
Total Production: 59.81 units 
Total Consumption: 15.05 units 
 
Round 5: 
Market Price: $17.70 
Total Production: 53.10 units 
Total Consumption: 16.95 units 
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6) Write a C program, particle_movement.c, to simulate the movement of particles in a two-dimensional space, 
allowing the user to input the velocity for each particle. The program will use pointers for dynamic memory 
management of particle data. 
 
Problem Description: 
Develop a simulation program where each particle's position is updated based on its velocity in a two-dimensional 
space. Users should input the initial position and velocity for each particle. The program tracks and displays the position 
of these particles over time. 
 
Structs to be Defined: 
Particle: Represents a particle in space. 

- Fields: float x_position, float y_position, float x_velocity, float y_velocity. 
 
Functions to Implement: 

- createParticle: Dynamically allocates and initializes a particle. 
Signature: Particle* createParticle(float x_pos, float y_pos, float x_vel, float 

y_vel) 
- updateParticle: Updates the position of a particle based on its velocity. 

Signature: void updateParticle(Particle *particle) 
- displayParticle: Prints the current position of a particle. 

Signature: void displayParticle(const Particle *particle) 
- destroyParticle: Frees the memory allocated for a particle. 

Signature: void destroyParticle(Particle *particle) 
User Input: 
 
The user inputs the number of particles. 
The user inputs the initial position (x_position, y_position) and velocity (x_velocity, y_velocity) for each 
particle. 
 
Simulation Logic: 
Initialize the particles based on user input. 
For a predefined number of time steps, update and display the position of each particle. 
At the end of the simulation, the memory allocated for the particles is freed. 
 
Constraints: 
Use dynamic memory allocation for creating particles. 
The simulation runs for a fixed number of time steps (e.g., 10 time steps). 
 
int main(){ 
   int numParticles, steps = 10; 
   printf("Enter the number of particles: "); 
   scanf("%d", &numParticles); 
 
   Particle **particles = (Particle **)malloc(numParticles * sizeof(Particle *)); 
   if (particles == NULL) { 
       fprintf(stderr, "Error allocating memory\n"); 
       return 1; 
   } 
   for (int i = 0; i < numParticles; i++) { 
       float x_pos, y_pos, x_vel, y_vel; 
       printf("Enter x_position, y_position, x_velocity, y_velocity for particle %d: ", i 
+ 1); 
       scanf("%f %f %f %f", &x_pos, &y_pos, &x_vel, &y_vel); 
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       particles[i] = createParticle(x_pos, y_pos, x_vel, y_vel); 
   } 
   for (int t = 0; t < steps; t++) { 
       printf("Time step %d:\n", t + 1); 
       for (int i = 0; i < numParticles; i++){ 
           updateParticle(particles[i]); 
           displayParticle(particles[i]); 
       } 
       printf("\n"); 
   } 
   for (int i = 0; i < numParticles; i++){ 
       destroyParticle(particles[i]); 
   } 
   free(particles); 
 
   return 0; 
} 
 

Enter the number of particles: 1 
Enter x_position, y_position, x_velocity, y_velocity for particle 1: 1 1 10 0 
Time step 1: 
Particle Position: (11.00, 1.00) 
 
Time step 2: 
Particle Position: (21.00, 1.00) 
 
Time step 3: 
Particle Position: (31.00, 1.00) 
 
Time step 4: 
Particle Position: (41.00, 1.00) 
 
Time step 5: 
Particle Position: (51.00, 1.00) 
 
Time step 6: 
Particle Position: (61.00, 1.00) 
 
Time step 7: 
Particle Position: (71.00, 1.00) 
 
Time step 8: 
Particle Position: (81.00, 1.00) 
 
Time step 9: 
Particle Position: (91.00, 1.00) 
 
Time step 10: 
Particle Position: (101.00, 1.00) 
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Answers  

 
i a pointer to the first occurrence of the largest element in a given array 
 
ii  The last line will cause memory leak because the pointer my_array is now pointing to a new block of memory, we lost access to 
the first block of memory  (that we allocated via the second line of code) and we can’t free it (the first allocated block of memory) 
anymore => memory leak! 
 
iii  
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iv  
 

 
 
 
 
 
v  
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